Show simple item record

dc.contributor.authorIacovazzo, D.en
dc.contributor.authorCaswell, R.en
dc.contributor.authorBunce, B.en
dc.contributor.authorJose, S.en
dc.contributor.authorYuan, B.en
dc.contributor.authorHernández-Ramírez, L. C.en
dc.contributor.authorKapur, S.en
dc.contributor.authorCaimari, F.en
dc.contributor.authorEvanson, J.en
dc.contributor.authorFerraù, F.en
dc.contributor.authorDang, M. N.en
dc.contributor.authorGabrovska, P.en
dc.contributor.authorLarkin, S. J.en
dc.contributor.authorAnsorge, O.en
dc.contributor.authorRodd, C.en
dc.contributor.authorVance, M. L.en
dc.contributor.authorRamírez-Renteria, C.en
dc.contributor.authorMercado, M.en
dc.contributor.authorGoldstone, A. P.en
dc.contributor.authorBuchfelder, M.en
dc.contributor.authorBurren, C. P.en
dc.contributor.authorGurlek, A.en
dc.contributor.authorDutta, P.en
dc.contributor.authorChoong, C. S.en
dc.contributor.authorCheetham, T.en
dc.contributor.authorTrivellin, G.en
dc.contributor.authorStratakis, C. A.en
dc.contributor.authorLopes, M-Ben
dc.contributor.authorGrossman, A. B.en
dc.contributor.authorTrouillas, J.en
dc.contributor.authorLupski, J. R.en
dc.contributor.authorEllard, Sianen
dc.contributor.authorSampson, J. R.en
dc.contributor.authorRoncaroli, F.en
dc.contributor.authorKorbonits, M.en
dc.date.accessioned2017-11-15T14:51:20Z
dc.date.available2017-11-15T14:51:20Z
dc.date.issued2016-06-01
dc.identifier.citationGermline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. 2016, 4 (1):56 Acta Neuropathol Communen
dc.identifier.issn2051-5960
dc.identifier.pmid27245663
dc.identifier.doi10.1186/s40478-016-0328-1
dc.identifier.urihttp://hdl.handle.net/11287/620515
dc.description.abstractNon-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101 alone is sufficient for the development of XLAG, implicating it as the causative gene within the Xq26.3 region. The pathological features of XLAG-associated pituitary adenomas are typical and, together with the clinical phenotype, should prompt genetic testing.en
dc.language.isoenen
dc.publisherBioMed Centralen
dc.relation.urlhttps://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-016-0328-1en
dc.rightsArchived with thanks to Acta neuropathologica communicationsen
dc.subjectWessex Classification Subject Headings::Oncology. Pathology.::Geneticsen
dc.subject.meshAcromegaly
dc.subject.meshAdenoma
dc.subject.meshAdolescent
dc.subject.meshChild
dc.subject.meshChild, Preschool
dc.subject.meshFemale
dc.subject.meshGene Duplication
dc.subject.meshGerm-Line Mutation
dc.subject.meshGigantism
dc.subject.meshHumans
dc.subject.meshInfant
dc.subject.meshIntracellular Signaling Peptides and Proteins
dc.subject.meshMale
dc.subject.meshPituitary Neoplasms
dc.subject.meshReceptors, G-Protein-Coupled
dc.subject.meshTreatment Outcome
dc.subject.meshYoung Adult
dc.titleGermline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.en
dc.typeJournal Articleen
dc.identifier.journalActa neuropathologica communicationsen
dc.description.noteThis article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site.en
dc.type.versionPublisheden


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record