dc.contributor.author | Francis, N K | en |
dc.contributor.author | Luther, A | en |
dc.contributor.author | Salib, E | en |
dc.contributor.author | Allanby, L | en |
dc.contributor.author | Messenger, D | en |
dc.contributor.author | Allison, A S | en |
dc.contributor.author | Smart, Neil J. | en |
dc.contributor.author | Ockrim, J B | en |
dc.date.accessioned | 2016-03-18T17:37:30Z | en |
dc.date.available | 2016-03-18T17:37:30Z | en |
dc.date.issued | 2015-07 | en |
dc.identifier.citation | The use of artificial neural networks to predict delayed discharge and readmission in enhanced recovery following laparoscopic colorectal cancer surgery. 2015, 19 (7):419-28 Tech Coloproctol | en |
dc.identifier.issn | 1128-045X | en |
dc.identifier.pmid | 26084884 | en |
dc.identifier.doi | 10.1007/s10151-015-1319-0 | en |
dc.identifier.uri | http://hdl.handle.net/11287/602240 | en |
dc.description.abstract | Artificial neural networks (ANNs) can be used to develop predictive tools to enable the clinical decision-making process. This study aimed to investigate the use of an ANN in predicting the outcomes from enhanced recovery after colorectal cancer surgery. | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.url | http://dx.doi.org/10.1007/s10151-015-1319-0 | en |
dc.rights | Archived with thanks to Techniques in coloproctology | en |
dc.subject | Wessex Classification Subject Headings::Gastroenterology | en |
dc.title | The use of artificial neural networks to predict delayed discharge and readmission in enhanced recovery following laparoscopic colorectal cancer surgery. | en |
dc.type | Journal Article | en |
dc.identifier.journal | Techniques in coloproctology | en |
dc.type.version | Published | en |